Search for neutrinoless double beta decay: from NEMO3 to SuperNEMO

Arnaud Chapon on behalf of the NEMO/SuperNEMO collaboration

LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen, France

11 october 2010

Contents

Double beta decay

The two decay processes

The allowed 2ν process $(2\nu 2\beta)$

$$(\mathsf{A},\mathsf{Z})\,\rightarrow\,(\mathsf{A},\mathsf{Z}{+}2)\,+\,2\mathsf{e}^-\,+\,2\bar{\nu_e}$$

- $\Delta L = 0$
- $\bullet \ \nu \neq \bar{\nu}$

•
$$(T_{1/2}^{2\nu})^{-1} = G_{2\nu} |M_{2\nu}|^2$$

•
$$T_{1/2}^{2
u} pprox 10^{19} - 10^{21}$$
 years

Fig.: $2\nu 2\beta$ mechanism

The 0ν process beyond the SM $(0\nu 2\beta)$

$$(A,Z) \rightarrow (A,Z+2) + 2e^{-1}$$

•
$$\Delta L = 2$$

• $\nu \equiv \bar{\nu}$

•
$$(T_{1/2}^{0\nu})^{-1} = G_{0\nu} |M_{0\nu}|^2 |m_{\beta\beta}|^2$$

•
$$T_{1/2}^{0
u} \geq 10^{24}$$
 years

Fig.: $0\nu 2\beta$ mechanism

Double beta decay

Experimental principle

Fig.: 2β decay spectrum

The tracko-calo technique enables to :

- measure the energy of the 2 electrons with a good energy resolution (fwhm $\approx 10\%$ @ 1 MeV)
- identify individually the 2 emitted electrons (E_{e_1} , E_{e_2} , Δt , $\cos\theta$)
- measure background components
- have an efficiency $\approx 30\%$

Double beta decay

Choice of 2β isotopes Experimentally :

$$T_{1/2}^{0
u} \ge k.rac{\epsilon}{A}\sqrt{rac{M.t}{N_{bgr}.r}}$$

with $k = \frac{ln2.N_A}{1.64}$: constant, ϵ : efficiency, A: molecular weight, M: source mass, t: time of measurement, N_{bgr} : background events and r: energy resolution

Choice of 2β isotopes

A. Chapon

• high Q _{BB}	2β	Q_{etaeta}	nat ab	$T_{1/2}^{2\nu}$	$G_{0\nu}$
$E_{\alpha}(^{208}TI) = 2.6 \text{ MeV}$	isotope	(keV)	(%)	(years)	(10 ⁻²⁵ yr ⁻¹)
$Q_{\beta}(^{214}\text{Bi}) = 3.3 \text{ MeV}$	⁴⁸ Ca	4272	0,187	4.2×10 ¹⁹	2,44
• high $G_{0\nu}$ (low $T_{1/2}^{0\nu}$)	⁸² Se	2995	8,73	9.2×10 ¹⁹	1,08
• high $T_{1/2}^{2\nu}$ (low $2\nu 2\beta$)	⁹⁶ Zr	3350	2,8	20.0×10 ¹⁸	2,24
	¹⁰⁰ Мо	3034	9,63	$7.1 imes 10^{18}$	1,75
high mass :	¹¹⁶ Cd	2805	7,49	$3.0 imes 10^{19}$	1,89
🕨 natural abundance	¹³⁰ Te	2528,9	33,8	$9.0 imes 10^{20}$	1,70
Iow atomic mass A	¹³⁶ Xe	2479	8,9	8.5×10 ²¹	1,81
enrichment	¹⁵⁰ Nd	3368,1	5,6	7.0×10 ¹⁸	8,00

5 / 20

Experimental setup

Fig.: NEMO3 sources

Source

	10kg	of	2β	isotopes
--	------	----	----------	----------

2β	$Q_{\beta\beta}$	enrichment	mass	
isotope	(keV)	(%)	(g)	
¹⁰⁰ Mo	3034	96.8	6914	
⁸² Se	2995	96.9	932	
¹³⁰ Te	2529	89.4	454	
¹¹⁶ Cd	2802	93.2	405	
¹⁵⁰ Nd	3367	91.0	37	
⁹⁶ Zr	3350	57.3	9.4	
⁴⁸ Ca	4271	73.1	6.99	
$^{\rm nat}{\rm TeO_2}$			0.9	
Cu			0.7	

글 🖌 🖂 🖂

Experimental setup

Fig.: NEMO3 setup

- Source (1)
 - 10kg of 2eta isotopes
- Tracking detector (4)
 - Drift wire chamber in Geiger mode (6180 cells)
 - Gas : He + 4% ethyl alcohol + 1% Ar+ 0.1% H₂O
- Calorimeter
 - 1940 plastic scintillators (2) coupled to low radioactivity PMTs (3)

Experimental setup

Fig.: NEMO3 setup

- Magnetic field
 25 Gauss
- Shielding
 - LSM (4800 m.w.e.)
 - Gamma shield : Pure Iron (18 cm)
 - Neutron shield : borated water (30 cm, wall)
 + Wood (40 cm, top and bottom)
- Radon free air around the detector
 - Phase I (Feb 2003 Oct 2004) : High Radon
 - Phase II (Dec 2004 Now) : Low Radon (reduced by factor 6)

Background rejection

Fig.: reconstruction of a simulated $2\nu 2\beta$ decay from $^{100}{\rm Mo}$

• Measurement of all kinematics parameters

$$\mathsf{E}_{e_1}, \mathsf{E}_{e_2}, \Delta t, \cos\theta$$

Particles identification

e^, e+,
$$\gamma$$
, α

► e⁻, e⁻
$$\gamma$$
, e⁻ $\gamma\gamma$, e⁻ $\gamma\gamma\gamma$, e⁻ α , crossing e⁻...

< ∃⇒

Background rejection¹

channel	background category	radio-contaminants		
$e^-\gamma_{ext}$, crossing e^-	external background	⁴⁰ K, ⁶⁰ Co, ²²⁶ Ra		
$e^-\gamma$, $e^-\gamma\gamma$, $e^-\gamma\gamma\gamma$	internal background from γ -emitters	²⁰⁸ TI, ²⁰⁷ Bi		
1e	internal background from pure eta -emitters	^{234m} Pa, ⁴⁰ K, ⁹⁰ Y		
$e^-\alpha(N\gamma)$	radon daughters deposited on wires and source foils	²¹⁴ Bi, ²¹⁴ Po		

elaborate a full background model in the 500keV-3MeV region

Can measure :

- internal backgrounds in foils
- external backgrounds from detector components
- radon in gas
- cross check with Cu foils.

¹NIM A606 (2009) 449-465

NEMO3 results - $2\nu 2\beta$ from ¹⁰⁰Mo (7kg)²

Phase I (
$$\approx 1$$
 yr, $\frac{S}{B} = 40$) : $T_{1/2}^{2\nu} = (7.11 \pm 0.02_{(stat)} \pm 0.54_{(sys)}) \times 10^{18}$ years

²PRL 95 (182302) 2005

A. Chapon

NEMO3 results - $2
u2\beta$ from other isotopes

NEMO3 results - $0\nu 2\beta$ from ¹⁰⁰Mo (7kg) and ⁸²Se (1kg)

NEMO3 results - other measurements

⁵Nucl. Phys. A765 (2006) 483

From NEMO3 to SuperNEMO SuperNEMO design

From NEMO3 to SuperNEMO

SuperNEMO design

20 modules surrounded by passive shielding

2 m (assembled, ~0.5m between source and calorimeter)

Fig.: SuperNEMO module

20 modules

Source

5kg per module (40 mg/cm², 4 × 2.7 m²) ⁸²Se first (High $Q_{\beta\beta}$, long $T_{1/2}^{0\nu}$, proven enrichment technology) ⁴⁸Ca and ¹⁵⁰Nd under consideration

- Tracking detector
 - Drift wire chamber in Geiger mode (2000 cells)
- Calorimeter
 - 600 plastic scintillators coupled to low radioactivity PMTs

34.16

From NEMO3 to SuperNEMO

R&D developments

Calorimeter

Scintillator and PMT R&D : requires resolution demonstrated with 28cm hexagonal blocks (\geq 10cm thick) directly coupled to 8" PMT.

FWHM = 4% @ 3MeV

Tracker

Basic cell design developed and verified. Required performances demonstrated using cosmic muon data.

ヨート

 $\epsilon_{Geiger} > 98\%$

From NEMO3 to SuperNEMO

R&D developments

to 222_{BIP0} 224_{BIP0} (t = 300 rs) (t = 164 us) t

$BiPo^6$: $\beta\beta$ source foils measurement

Enrichment

• 100kg by centrifugation is feasible

Radio-purity

- Chemical and physical purification
- requirements :
 - 208 Tl : < 2 μ Bq/kg 214 Bi : < 10 μ Bg/kg

```
Foil production
```

• pprox 40 mg/cm ² "composite" foil

 ²⁰⁸TI : Required sensitivity demonstrated after 3 months
 ²¹⁴Bi : investigating ²¹⁴Bi/radon sensitivity

⁶NIM A 622 (2010) 120-128

Conclusion

Summary

- Nemo experiments use "tracking + calorimetry" technique
 - Full event reconstruction
 - Clear $\beta\beta$ event signature
 - Excellent background rejection
 - New physics studies using event topology
- NEMO3 is a running $2\nu 2\beta$ factory
 - $T_{1/2}^{2
 u} = (7.17 \pm 0.01_{(stat)} \pm 0.54_{(sys)}) \times 10^{18}$ years in ¹⁰⁰Mo
 - 7 isotopes studied (100 Mo, 82 Se, 130 Te, 116 Cd, 150 Nd, 96 Zr, 48 Ca)
- NEMO3 provides competitive $0\nu 2\beta$ limits • $T_{1/2}^{0\nu} > 1 \times 10^{24} yr$ @ 90% CL ($\langle m_{\nu} \rangle < (0.47 - 0.96) eV$)
- SuperNEMO is next generation experiment
 - R&D objectives reached : energy resolution, BiPo sensitivity
 - Demonstrator module sensitive to Klapdor claim by 2015
 - Full detector sensitivity by 2019 : ${\cal T}_{1/2}^{0
 u}>1 imes10^{26}yr$ (($\langle {\sf m}_{
 u}
 angle<(0.04$ 0.11) eV)
 - Possibility to probe 0
 u2eta mechanism

Conclusion Schedule

2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
NEMO3 running	NEMO3 dismantled SuperNEM demonstra constructi	AO ator on	Supe demonstrr 7 kg T _{1/2} > 6 Confirm KI	rrNEMO ator running g ⁸² Se .5 . 10 ²⁴ y apdor clain	g: n?				

Full SuperNEMO construction: -Likely to be located in new LSM Hall Full Sensitivity by 2019 (m_v ~ 0.05 eV)

< 日 > < 同 > < 三 > < 三 > < 三 > <

Backgrounds for $\beta\beta$ decays Backup slide

 $\bullet \ \, {\rm External} \ \, \gamma$

Origin : natural radioactivity of the detector or neutrons Main background for $2\nu 2\beta$ but negligeable for $0\nu 2\beta$ (¹⁰⁰Mo and ⁸²Se : $Q_{\beta\beta} \approx 3$ MeV > E_{γ} (²⁰⁸Tl) = 2.6 MeV)

• $^{208}\mathsf{TI}$ and $^{214}\mathsf{Bi}$ contamination inside the etaeta source foils

- Radon inside the tracking detercor
 - Deposits on the wires near the etaeta foils
 - Deposits on the surface of the etaeta foils

Radon trapping facility Backup slide

Radon trapping facility

- 1 ton of charcoal @ -50°C, 9 bars
- air flux = 150 m3/h
- Input : $A(^{222}Rn)$ 15 Bq/m³
- Output : $A(^{222}Rn) < 15 mBq/m^{3}!!!$

reduction factor of 1000

- Inside the NEMO3 tent : factor of 100 - 300
- Inside NEMO3 : almost factor of 10 A(²²²Rn) : 6 mBq/m³

Probing new physics⁷

Backup slide

In case of observaton, measure energy difference and cosine of separating angle between electrons to identify mechanism of $0\nu 2\beta$.

Combination of half-life measurement (blue contour) and topological parameter reconstruction (green contours) leads to parameter space restriction (red contour) at 1 standard deviation.

⁷arXiv :1005.1241, accepted by EJP C for publication