Results of BiPo-1 and development of BiPo-3 prototypes for radiopurity measurements of the SuperNEMO source foils

Arnaud Chapon

LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen, France

11 november 2010

Contents

From NEMO3 to SuperNEMO

NEMO3 is a tracko-calo experiment in operation in the Laboratoire Souterrain de Modane since 2003.

- 10kg of 2β isotopes (1) 6.9 kg of ¹⁰⁰Mo 932 g of ⁸²Se ¹³⁰Te, ¹¹⁶Cd, ¹⁵⁰Nd, ⁹⁶Zr, ⁴⁸Ca
- Tracking detector (4)
 - Drift wire chamber in Geiger mode (6180 cells)
 - Gas : He + 4% ethyl alcohol + 1% Ar+ 0.1% H₂O
- Calorimeter
 - 1940 plastic scintillators (2) coupled to low radioactivity PMTs (3)
- Magnetic field
 25 Gauss

From NEMO3 to SuperNEMO

NEMO3 results - event reconstruction

Fig.: reconstruction of a simulated $2\nu 2\beta$ decay from $^{100}{\rm Mo}$

• Measurement of all kinematical parameters

$$\mathsf{E}_{e_1}$$
, E_{e_2} , Δt , $\cos \theta$

Particles identification

e^, e+,
$$\gamma$$
, α

Direct background measurements

► e⁻, e⁻
$$\gamma$$
, e⁻ $\gamma\gamma$, e⁻ $\gamma\gamma\gamma$, e⁻ α , crossing e⁻...

From NEMO3 to SuperNEMO NEMO3 results - $0\nu 2\beta$ from ¹⁰⁰Mo (7kg) and ⁸²Se (1kg)

A. Chapon

From NEMO3 to SuperNEMO

SuperNEMO design

20 modules surrounded by passive shielding

2 m (assembled, ~0.5m between source and calorimeter)

Fig.: SuperNEMO module

20 modules

Source

5kg per module (40 mg/cm², 4 × 2.7 m²) ⁸²Se first (High $Q_{\beta\beta}$, long $T_{1/2}^{0\nu}$, proven enrichment technology) ⁴⁸Ca and ¹⁵⁰Nd under consideration

- Tracking detector
 - Drift wire chamber in Geiger mode (2000 cells)
- Calorimeter
 - 600 plastic scintillators coupled to low radioactivity PMTs

김 글 아이 글 날 수

From NEMO3 to SuperNEMO SuperNEMO design

NEMO3		SuperNEMO
¹⁰⁰ Mo	isotope	⁸² Se or ⁴⁸ Ca or ¹⁵⁰ Nd
7kg	isotope mass	100kg
18%	efficiency	30%
FWHM = 8% @ 3MeV	energy resolution	FWHM = 4% @ 3MeV
208 Tl : $pprox$ 100 μ Bq/kg	internal contaminations	208 TI : ${\leq}2\mu$ Bq/kg
214 Bi: < 300 μ Bq/kg	in the $etaeta$ foils	214 Bi : $\leq \! 10 \mu$ Bq/kg
Rn:5mBq/m ³	Rn in the tracker ²	${\sf Rn}$: $\le 0.15~{\sf mBq/m^3}$
${{\cal T}_{1/2}^{0 u}>2 imes 10^{24}}$ yr $\langle {f m}_{ u} angle <{f (0.3 - 0.9) eV}$	sensitivity	${T_{1/2}^{0 u}}>1 imes 10^{26} yr \ \langle {f m}_{ u} angle < {f (0.04$ - ${f 0.11}f)$ eV

²NIM A606 (2009) 449-465

EL OQO

12 N

Principle

SuperNEMO source foils

Source production

- chemical and physical purification
- requirements :

 ²⁰⁸TI : < 2 μBq/kg
 ²¹⁴Bi : < 10 μBq/kg

Radiopurity measurement

- ²¹⁴Bi and ²⁰⁸Tl contaminations measured by BiPo processes from natural radioactivity chains
- β and α particles detected by thin radiopure plastic scintillators coupled to light-guides and low radioactivity PMTs

BiPo-1 prototype

BiPo-1 prototype

- 0.8 m^2 Feb 2008 to now in LSM
- 20 similar high radiopurity modules
 - 200×200×3 mm³ Polystyrene
 scintillators [POPOP + pTp]
 entrance face aluminized with 200
 - nm of ultra pure aluminum
 - PMMA light guides
 - side reflector in Teflon (0.2 mm)
 - 5" Hamamatsu R6594-MOD low background PMTs

- lead and pure iron shielding, radon free air flushing
- matacq VME digitizer boards : 2.5 μ s @ 1 GHz, 1 V & 12 bit
- trigger boards for longer delays (²¹⁴Bi)

BiPo-1 prototype - signal digitalization

- amplitude, total charge \Rightarrow deposited energy
- time difference
- pedestal
- charge ratio

 $\Rightarrow e^{-}/\alpha$ discrimination

BiPo-1 prototype - validation of the technique³

Validation of the technique

• calibrated 150 μ m aluminium foil (40 mg/cm²) in one module with A(²¹²Bi \rightarrow ²¹²Po) = 0.19 \pm 0.04 Bq/kg

160 days of data and 1309 BiPo events detected

- $T_{1/2} = 276 \pm 12_{stat} \text{ ns} (T_{1/2} (^{212} \text{Po}) = 299 \text{ ns})$
- $\succ eta$ and lpha spectra on the basis of simulations

 $A(^{212}\text{Bi} \rightarrow {}^{212}\text{Po}) = 0.16 \pm 0.01_{\textit{stat}} \pm 0.03_{\textit{syst}} \text{ Bq/kg}$

³NIM A 622 (2010) 120-128

The BiPo detector BiPo-1 prototype - backgrounds measurements

3 sources of backgrounds should be considered :

- ²³⁸U (²¹⁴Bi) and ²³²Th (²⁰⁸Tl) contaminations on the surface of the scintillators (include volume contaminations within \sim 100 μ m thickness)
- $\bullet~^{222} Rn$ and $^{220} Rn$ migration between the source and the scintillators

• random coincidences (external γ)

EN AEN ELE NOR

BiPo-1 prototype - backgrounds measurements³

³NIM A 622 (2010) 120-128

A. Chapon

Results of BiPo-1 and development of BiPo-3 prototypes for radiopurity measurements 13 / 18

BiPo-1 prototype - backgrounds measurements

Backgrounds measurements

- ²¹⁴Bi scintillators background
 dominated by radon background
 - solutions under test : radon protection film (EVOH), improvement of radon free air flushing system...

-

BiPo-1 prototype - first samples measurements

First samples measurements

• 5 samples of 120 μm thick Stycast samples have been measured using 5 carbon modules (102 days.m^2) :

$A_{Stycast}(^{208}Tl) < 132 \ \mu Bq/kg \ 0 \ 90\% \ CL$

• 3 samples of 100 μm thick Mylar samples have been measured using 3 PMMA modules (53 days.m²) :

 $A_{Mylar}(^{208}TI) < 109 \ \mu Bq/kg \ 0 \ 90\% \ CL$

- no available measurement of ²¹⁴Bi contamination
- need a larger detector for more sensitive measurements

BiPo-3 prototype

BiPo-3 prototype

- The BiPo-3 detector (3.24 m²) can measure 1.3 kg of SuperNEMO ⁸²Se foil (40 mg/cm²) with 6.5% efficiency
- 2 identical modules of $2.7 \times 0.6 \text{ m}^2$
- each high radiopurity module consists of 18×2 light lines (total 72)
 - 300×300×2 mm³ Polystyrene scintillators [POPOP + pTp]
 - entrance face aluminized with 200 nm of ultra pure aluminum
 - PMMA light guides
 - side reflector in Tyvek (0.2 mm)
 - 5" Hamamatsu R6594-MOD low background PMTs

-

- lead and pure iron shielding, radon free air flushing
- electronics similar to BiPo-1

BiPo-3 prototype - detector sensitivity

BiPo-3 sensitivity

- assuming BiPo-1 background from the scintillator surface $A(^{208}T) \sim 1.5 \ \mu Bq/m^2 (^{214}Bi \text{ is still unknown in BiPo-1})$
- Surface background reduced by factor 3 with the source
- BiPo-3 sensitivity for SuperNEMO ⁸²Se sources is :
 A(²⁰⁸TI) < 10-12 μBq/kg in 1 month
 A(²⁰⁸TI) < 3-4 μBq/kg in 6 months

Summary

- NEMO3 data and HPGe measurements of $\beta\beta$ sources show a small tension in ²⁰⁸TI \Rightarrow the BiPo detector should remeasure these sources
- BiPo-1 prototype has validated the technique and gave very good results
- BiPo-1 first measurements
 - $A_{Mylar}(^{208}TI) < 109 \ \mu Bq/kg @ 90\% CL$
 - $A_{Stycast}(^{208}\text{TI}) < 132 \ \mu\text{Bq/kg} @ 90\% \text{CL}$
- a BiPo-3 prototype (2 light-lines) helps us to finalize BiPo-3 design
- BiPo-3 detector should be running before summer 2011 (LSC) with sensitivity for SuperNEMO ⁸²Se sources
 - A(208 TI) < 10-12 μ Bq/kg in 1 month
 - A(208 TI) < 3-4 μ Bq/kg in 6 months
- investigations for $^{214}{\rm Bi}$ background reduction are in progress \Rightarrow no measurement available until now

BiPo-1 e⁻/ α discrimination Backup slide

BiPo-1 e⁻/ α discrimination

- longer half-life scintillation states excited by α particles but not by e⁻ because of much larger energy loss
- signal tail is higher for α particles than e⁻

discrimination parameters : $\chi = q_{tail}/Q_{total}$ Cut $\chi < 0.7$: 56% α saved and 98% e⁻ rejected

Phoswich prototype Backup slide

Phoswich prototype

- 2 scintillators with different scintillation times
- no better electron rejection

discrimination parameters : $\chi = q_{tail}/Q_{total}$ Cut $\chi > 0.9$: 93% α saved and 80% e⁻ rejected

The BiPo-2 prototype

Backup slide

BiPo-2 prototype

- more compact and sophisticated technique with spatial position reconstruction (\sim 2 cm resolution)
- 2 polished scintillator plates 0.56 m^2 :
 - 75×75×1 cm³ Polystyrene scintillators [POPOP + pTp]
 - naked scintillators
 - PMMA light guides
 - side reflector in Teflon (0.2 mm)
 - 3" Hamamatsu R6091-MOD low background PMTs
- BiPo-2 encountered several problems (calibration, acquisition...) from the beginning and it was long to solve → results coming soon

◇□▶ ▲@▶ ▲글▶ ▲글▶ ▲□▶ ���

BiPo-3 shielding

Backup slide

Total size : 3.2 \times 2.6 m^2 Load on the floor : 5.5 tons/m^2

BiPo-3 shielding

• lead and pure iron shielding

- pure Iron tank
 - (thickness = 20 mm)
 - \Rightarrow 5.5 tons of iron
- ► lead shield
 - (using Lead bricks 10 cm thick) \Rightarrow 37 tons of lead
- radon free air flushing

Double beta decay processes Backup slide

The allowed 2ν process $(2\nu 2\beta)$

$$(\mathsf{A},\mathsf{Z}) \rightarrow (\mathsf{A},\mathsf{Z}{+2})\,+\,2e^-\,+\,2\bar{\nu_e}$$

- $\Delta L = 0$
- $\nu \neq \bar{\nu}$

•
$$(T_{1/2}^{2\nu})^{-1} = G_{2\nu} |M_{2\nu}|^2$$

•
$$T_{1/2}^{2\nu} \approx 10^{19} - 10^{21}$$
 years

Fig.: $2\nu 2\beta$ mechanism

The 0ν process beyond the SM $(0\nu 2\beta)$

$$(A,Z) \rightarrow (A,Z+2) + 2e^{-2}$$

•
$$\Delta L = 2$$

• $\nu \equiv \bar{\nu}$

•
$$(T_{1/2}^{0\nu})^{-1} = G_{0\nu} |M_{0\nu}|^2 |m_{\beta\beta}|^2$$

•
$$T_{1/2}^{0
u} \ge 10^{24}$$
 years

Fig.: $0\nu 2\beta$ mechanism

Backgrounds for $\beta\beta$ decays Backup slide

- $\bullet \ \, {\rm External} \ \, \gamma$
 - Origin : natural radioactivity of the detector or neutrons Main background for $2\nu 2\beta$ but negligeable for $0\nu 2\beta$ (¹⁰⁰Mo and ⁸²Se : $Q_{\beta\beta} \approx 3$ MeV > E_{γ} (²⁰⁸Tl) = 2.6MeV)

• $^{208}\mathsf{TI}$ and $^{214}\mathsf{Bi}$ contamination inside the etaeta source foils

- Radon inside the tracking detercor
 - Deposits on the wires near the etaeta foils
 - Deposits on the surface of the etaeta foils

-

Radon trapping facility Backup slide

Radon trapping facility

- 1 ton of charcoal @ -50°C, 9 bars
- air flux = 150 m3/h
- Input : $A(^{222}Rn)$ 15 Bq/m³
- Output : $A(^{222}Rn) < 15 mBq/m^3!!!$

reduction factor of 1000

- Inside the NEMO3 tent : factor of 100 - 300
- Inside NEMO3 : almost factor of 10 A(²²²Rn) : 6 mBq/m³

NEMO3 results : $2\nu 2\beta$ from ¹⁰⁰Mo $(7\text{kg})^5$ Backup slide

Phase II (
$$pprox$$
 3.5 yr, ${S\over B}$ = 76) :
 ${T}_{1/2}^{2
u}=(7.17\pm0.01_{(stat)}\pm0.54_{(sys)}) imes10^{18}$ years

Phase I ($\approx 1 \text{ yr}, \frac{S}{B} = 40$) : $T_{1/2}^{2\nu} = (7.11 \pm 0.02_{(stat)} \pm 0.54_{(sys)}) \times 10^{18} \text{ years}$

⁵PRL 95 (182302) 2005

A. Chapon