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Abstract

We describe how the Euclid detectors in the Near Infrared Spectrometer and Photometer (NISP) channel will be
read out on board and present an analytic expression for the estimated fluence in each pixel with the associated
quality factor of the fit per pixel. The method accounts for the Poisson like distribution of the data and includes the
effects of noise correlations that arise after the coadding procedure of frames read non-destructively up the ramp
during one exposure. The bias of the flux estimator presented in this paper is kept lower than 0.3% over a wide
rang of scientifically interesting fluxes of Euclid. The associated error is by 6% lower than the commonly used
formula derived in Rauscher et al. in the context of an equally weighted least squares fit. Moreover, the quality
factor follows the very well known c x n;th

2 ( ) distribution and thus provides a well behaved statistical tool to check
the goodness of the ramp fit. The method is proposed in the context of a large amount of data per exposure,
produced by the NISP detectors, that cannot be transferred to the ground for the subsequent processing. The
method, which is validated using real and simulated test data, can be safely used by most near-infrared instruments
which require very accurate measurements to be performed on board.

Key words: instrumentation: detectors – instrumentation: photometers – instrumentation: spectrographs – methods:
analytical – techniques: image processing
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1. Introduction

In this work we describe how we plan to extract the signal
from the near-infrared (NIR) detectors on board Euclid. A high
accuracy of the flux estimate on board from a multiple
sampling of a long (few hundreds of seconds) exposure in the
NIR channel of Euclid, a rigorous control of the error and fit
quality as well as the calibration with sub-percent precision are
fundamental to ensure the scientific goals of the mission. For
this purpose we introduce in this paper a new statistical
estimator of the fluence and an associated quality factor of the
fit to the data produced by the NIR detectors in the Euclid focal
plane.

A common technique used in the low-noise science
applications, and which will be applied to the Euclid NIR
detectors, to reduce the effective readout noise of the pixels is
to read out NIR arrays in the multiple accumulated sampling
(MACC) mode. The accumulating signal is sampled up the
ramp (UTR) as a function of time and the multiple reads are
averaged within groups.

Euclid’s telemetry limitations do not allow for a transfer to
the ground of all the averaged groups for the subsequent
processing. Only the image composed of the fitted slopes of the
pixels for each exposure is sent to the ground. The flux
integrated by the focal plane, sampled over more than
60×106 pixels, must be fitted in orbit in an analytic way
with an algorithm subject to the CPU limitations. One should
also be able, using the transferred data, to detect any abnormal
behavior of the pixels. It is therefore necessary to send an
image of quality factors for each exposure, in addition to the
image of the fitted fluxes. The former should control the
goodness of the fit and indicate the occurrence of any fit
inconsistency caused by a cosmic ray hit, nonlinear response of
the pixel or any electronic induced instability.
Usually an equally weighted least squares fit is applied to

estimate the flux. Although this procedure has an analytic
solution, the derivation of the corresponding quality factor
requires a second pass over all the groups digitized UTR per
pixel, which is impossible within the CPU limitations of
Euclid. Moreover, the equally weighted least squares fit
neglects the correlations between the digitized frames and
treats the samples as Gaussian distributed with constant
variance. It was noticed in Kubik et al. (2015a) that the
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optimal calculation of the flux, in terms of signal to noise ratio,
should use all the information contained in the covariance
matrix. In this case, however, explicit analytic expressions for
the parameters cannot be obtained and the parameters must be
computed using numerical methods which are too demanding
in terms of accessible memory and computing time.

In order to avoid the numerical computations the typically
minimized statistics in the case of Poisson distributed data are
the Cash statistics C, defined by Cash (1979). In practice, the
absolute value of C statistics cannot be readily interpreted as an
indicator of the fit quality (an accurate simulation is needed). It
is therefore preferable to use the c2 statistics which measures
the difference between the observed data and the model. Since
for Poisson distributed random variables DGi the expected
value is equal to the variance, uncertainties in the data are never
accurately known, nor are they usually the same for each data
point. Thus, some approximation to the uncertainties in the data
is needed. The c2 is usually approximated by the data-based
summation which in our case takes the form

åc c» =
D -
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G g
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i

i

i

2 2
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where D and M subscripts indicate whether the data or the
model are used as weights and g stands for the best estimate of
the parent population of DGi. In the literature these two
weighting choices are referred to as “Neyman’s” and
“Pearson’s” respectively.

The deviations from Gaussianity invalidate both approxima-
tions when the counts per bin fall below ∼10–20. The obvious
approximation, that of using each datumDGi as the estimate of
its variance is usually biased (Nousek & Shue 1989; Wheaton
et al. 1995; Churazov et al. 1996). Wheaton et al. (1995) point
that the failure of the cD

2 form is more precisely caused by the
strong anticorrelations between the data and the weights when
DGi rather thanDGi is used to approximate the uncertainties in
the data (DGi stands for the expectation value of DGi). In
short,DGi already contains the Poisson noise and thus wrongly

estimates the variance. A number of other approximations have
been proposed to mitigate this effect (Kearns et al. 1995;
Wheaton et al. 1995; Churazov et al. 1996; Mighell 1999) but
none of them can be directly applied to the nondestructive
readouts of the NIR integrating arrays.
As a very stringent error budget is required in the NIR

channel of the Euclid mission we introduce in this paper an
adapted statistical estimator of the fluence and the associated fit
quality factor from Poisson distributed and correlated data.
Both, the estimator and the quality factor have an analytic form
and thus can be easily implemented in the on-board digital
processing unit. The flux bias is kept under control in the range
of representative science fluxes and the associated error is by
6% lower than the commonly used formula derived in
Rauscher et al. (2007) in the context of an equally least
squares fit.
The paper is structured as follows. Section 2 briefly

describes the Euclid NIR detectors and the mission require-
ments. The principle of nondestructive reads in NIR integrating
arrays and the origin of the correlations are also explained in
this section. The new fluence estimator is introduced in
Section 3. The derivation of the theoretical formulas is
followed by a Monte Carlo based analysis where the estimator
sensitivity to different sources of uncertainties is considered.
Finally, in Section 4, we introduce the quality factor and show
how it can be used to identify the anomalies occurring during
the exposure.
Although our discussion is focused on the Euclid NIR array,

we anticipate that much of what is discussed will be of interest
to any mission using similar NIR sensors.

2. Detectors for Euclid Near Infrared Spectrometer
and Photometer (NISP)

2.1. NISP Detectors Subsystem

The NISP Detector System (NI-DS) hosts the focal plane
composed of 16 low-noise HAWAII-2RG (H2RG)4 detectors

Figure 1. The detector system composed of a sensor chip assembly (left panel), cryo flex cable (middle panel) and sensor chip electronics (right panel).
(A color version of this figure is available in the online journal.)

4 HAWAII is an acronym for HgCdTe Astronomical Wide Area Infrared
Imager, 2 denotes 2048×2048 pixels, R—reference pixels and G—guide
window capability.
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supplied by Teledyne (Beletic et al. 2008) and selected
by NASA.

Each H2RG detector, presented in Figure 1, is equipped with
a SIDECAR ASIC5 sequenced by a dedicated firmware
implementing the readout modes specified for the Euclid
survey. The H2RG detectors are read using 32 parallel outputs.
The acquisition firmware yields a minimum exposure time of
1.31 s with a pixel rate of 100 kHz.

Each H2RG detector will return an array of
2048×2048 pixels coded with 16 bits per pixel. The
photosensitive 2040×2040 pixels array is surrounded by 4
rows and columns of reference pixels which are not connected
to the detector photodiodes but contain a simple capacitor that
electronically mimics the operating pixels. The reference pixels
are important to track biases and temperature variations over
long exposures (Moseley et al. 2010; Rauscher et al. 2012).
The typical single frame read noise of the H2RG detectors is in
a range from 10 to 20 -e .

Similar detectors will be used by the future NASA mission
JWST (NIRCAm, NIRSpec, NIRISS) Gardner et al. (2009).
Previous generations of this type of detectors are in use in the
Hubble Space Telescope Wide Field Camera 3 (HAWAII-1R)
(Robberto et al. 2004) and in instruments on ground facilities
such as the NIR integral field spectrograph at Gemini North at
Manua Kea (HAWAII-2; McGregor et al. 1999) or X-shooter
at the European Southern Observatory at Paranal (H2RG)
(D’Odorico et al. 2004).

2.2. H2RG Multi-accumulated Readout Principle

For science observations NIR detectors, in general, acquire
UTR sampled data at a constant frame cadence. A frame Si is
the unit of data that results from sequentially clocking through
and reading out a rectangular area of pixels during a time tf. As
in the UTR mode individual frames suffer from a high readout
noise, it is common to average the frames within groups Gk.
This readout pattern is called a multiple accumulated sampling
and frequently a common abbreviation MACC(ng, nf, nd) is in
use where ng is the number of equally spaced groups sampled
UTR, nf is the number of frames per group and nd is the number
of dropped frames between two successive groups (see
Figure 2). Before fitting the flux, the frames within groups
are averaged. The signal in group Gk after averaging nf frames
is equal to
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The advantage of the coadding procedure is the reduction of the
Gaussian distributed pixel readout noise sR, assumed here to be
uncorrelated from frame to frame, down to the effective group

read noise sRG defined by
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Therefore, the larger the number of frames per group, the lower
the readout noise associated to each group after coadding.

2.3. Importance of Working in
the Differential Signal Mode

The correlations between data points are intrinsic to the non-
destructive readouts of the integrating arrays. The covariance
matrix C between points Gk and Gl was derived in Kubik et al.
(2015a). The diagonal entries of C are not only sums of the
readout noise and the shot noise, which would be the case for
an UTR sampling, but they include correlations in the shot
noise after the coadding procedure. The Poisson noise
correlates all the points G G,k l( ) with ¹l k making all the
entries of C different from zero and implying a use of
numerical methods to inverse the matrix in the fitting
procedure.
The merit of working in the group difference space

D = -+G G Gk k k1 , instead of individual group values, is that
a large part of Poisson noise contributions to the correlations
between groups is removed. The covariance matrix D between
the differences DGk and DGl was derived in Kubik et al.
(2015a). The diagonal elements of D are defined in Equation
(14) of Kubik et al. (2015a) which we rewrite below with the

Figure 2. Multiple accumulated sampling MACC(ng, nf, nd) with ng—number
of equally spaced groups sampled up the ramp, nf—number of frames per
group and nd—number of dropped frames between two successive groups.
(A color version of this figure is available in the online journal.)

5 SIDECAR—System for Image Digitization, Enhancement, Control And
Retrieval, ASIC—Application Specific Integrated Circuit (TM Teledyne
Imaging Sensors).
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notations adapted for this work
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The first term of Dkk is the electronic readout noise of DGk.
Second term corresponds to the shot noise contribution
between the last frame of the group Gk and the first frame of
group +Gk 1 while the third term arises from correlations after
the coadding procedure. In the above equation g is the signal
accumulated between two successive groups. We explicit also
the dependence on the conversion gain fe -e[ /ADU] which
converts the arbitrary digital units (ADU), recorded by the
readout electronic, into electrons. In this way Equation (5) and
the formulas in the following sections apply directly to the raw
pixel data not converted into physical units, i.e., the inter-group
flux g is measured in ADU per unit time = +t n n tg f d f( ) , and
the electronic readout noise sR is given in ADU. DD G g;kk k( )
is the error on the measurementDGk and depends on the inter-
group flux g. We rewrite the Dkk in the simple form

a
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where the Poisson noise correlations are encoded in the
coefficient α
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which depends only on the applied readout mode MACC
n n n, ,g f d( ) common to all the pixels.
The only non-null off-diagonal terms of the covariance

matrix D are the terms k k, 1( ). They are given by Equation
(8) of Kubik et al. (2015a) which in our notations can be
written as Dk k, 1. +Dk k, 1 take into account the correlation of
the Poisson and readout noise between two consecutive group
differences (Kubik et al. 2015a).

It can easily be seen that at fluxes higher than 5 e− s−1 the
off-diagonal terms can be neglected as they represent not more
than 4% of the diagonal terms for the typical readout noise
value s = -e10R in the MACC(15, 16, 13) exposure mode.

The readout noise sR is assumed here to be uncorrelated from
frame to frame, i.e., we neglect the f1 noise component which
correlates all the groups in the exposure. An estimate of the
contribution of the f1 noise to the signal variance was derived
in Smadja et al. (2010) and Kubik et al. (2015b). It was shown
that the f1 noise component depends on the exact timing
scheme adopted for the acquisition and can be significant for
long spectroscopic exposures. The power spectrum of the noise

peaks at low frequencies, but it seems that the recent versions
of the SIDECAR ASIC have a lower level of f1 noise than
measured in Rauscher et al. (2012). The estimation of its effects
on the fitting procedure is out of the scope of this paper,
nevertheless this issue will have to be reconsidered when the
performance of the algorithms proposed in this work is
evaluated with real data.

3. New Signal Estimator for the
Multi-accumulated Sampling

The maximum likelihood is a well known method for
estimating parameters in terms of the noisy data that they
influence. For example a likelihood for a Poisson-Gaussian
mixture has been proposed in Snyder et al. (1993) for image
recovery from noisy data acquired with a charge-coupled-
device (CCD) camera. As the CCD readout differs from the
MACC scheme used for NIR arrays, the likelihood from
Snyder et al. (1993) is unsuitable given the correlations arsing
from the coadding procedure. Moreover its solution requires
the execution of an iterative algorithm.
Here we propose a model that describes the measurements of

nondestructive readouts form infrared integrated arrays which
has an analytic solution and thus can be easily implemented in
the on board electronics. We assume that the detector
response is perfectly linear over its entire well depth, is
thermally stable, and is not subject to any time dependent
effects that vary during integrations or readouts. However, it is
well know that this type of detectors have a non liner response
mainly at high fluxes. The nonlinear behavior of the pixels can
be corrected prior to the signal estimate described below
with the scheme presented in Vacca et al. (2004). The
nonlinearity correction method that will be applied to both,
the flux estimate and to the quality factor, in the case of Euclid
mission will be addressed in the subsequent paper (in
preparation).
We define the likelihood function  for the infrared

integrating arrays as:

⎛
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where the total error squared on the measured differences DGk

s D = DG g D G g; ; 9k kk keff
2 ( ) ( ) ( )

includes the effective electronic readout noise of a pixel sRG,
the flux Poisson noise and the Poisson noise correlations
arising during the coadding procedure.
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The first and second derivatives of the logarithm of the
likelihood
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give the flux and the variance estimators, ĝ and sg
2ˆ ˆ respectively.

The estimated flux value ĝ is equal to
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and the variance estimator sg
2ˆ ˆ is
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where we have introduced the coefficient β to simplify the
notations:
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The introduced likelihood function is still an approximation
since we assume the Gaussian probability distribution for DGi

which are actually Poisson distributed. Nevertheless it provides
an unbiased fluence estimator in a large range of scientifically
interesting signals for a space missions such as Euclid.

In the next sections we illustrate how accurately the flux and
the variance are reconstructed from the estimators defined
above using Monte Carlo simulation. To illustrate the impact of
the improvements introduced in our method, namely the
Poisson noise correlations encoded in the coefficient α and the
flux dependent normalization factor in the likelihood function,
we will show the systematic effects on the estimators ĝ and sgˆ ˆ
when these effects are not taken into account. So we will refer
to the fully correct estimators as given in Equations (11) and
(12) with a label “a ¹ 0.” The label “a = 0” will refer to the
estimators where the Poisson noise correlations are neglected,
namely we explicitly put a = 0 in Equations (11) and (12).
Finally, the “no likelihood correction” label will correspond to
the estimators derived from the likelihood with a g-independent
normalization factor. The systematic bias of the estimator
derived from Equation (2) is partially due to the assumption
that the likelihood normalization factor ps1 2 2 does not
depend on the flux. This is obviously not true in the case of
Poisson distributed random variables DGi for which the
uncertainty σ is proportional to the inter-group flux g. We
account for this effect explicitly in Equation (8) as seff is a
function of g. The ”no likelihood correction” corresponds to the

omission of the second term of the log-likelihood l before
taking the derivatives, thus it is formally equal to the standard
approximation of the minimized function given in Equation (2).

3.1. Accuracy of the Flux Estimation

As an example we take the readout mode MACC(15, 16, 13)
proposed for the NISP instrument of the Euclid mission, but the
results can be easily generalized to any other MACC readout
schemes. The pixel readout noise is set to 10 electron rms—the
typical value for the NIR detectors used in NISP. We simulate
10,000 nondestructive exposures with the input flux fin ranging
from 0.1 e− s−1 to 150 e− s−1. The flux range spans the
expected signal range in Euclid from the dark current
(∼0.1 e− s−1) in the detector pixel, through the typical values
of flat field exposures and faint objects (1–20 e− s−1), up to
bright objects (∼100–150 e− s−1). The signal accumulated
between two successive groups gin equals =f tgin

+f n n tf d fin ( ) , where =t 1.3 sf is the single frame read time
and we set fe=1 -e /ADU.
The accuracy of the flux estimator is tested by computing the

bias

=
-

b
f g t

f
. 14

gin

in

ˆ
( )

The results are shown in Figure 3 as the function of the
simulation input flux fin. The bias of ĝ (red bold line) is less
than 0.3% for all the range of fluxes considered in this paper.
For comparison, when we neglect the Poisson noise correla-
tions the bias can be as high as 0.8% in the examined range of
fluxes. The fluence estimate obtained without the likelihood

Figure 3. Bias of the flux estimator ĝ in MACC(15, 16, 13) readout mode with
s = 10R

-e rms. The red bold solid line corresponds the bias of the estimator
given in Equation (11). The green solid line corresponds to flux estimator with
neglected Poisson noise correlations, namely with a = 0 in Equation (11).
Blue dashed line depicts the estimator derived from likelihood with constant
normalization factor.
(A color version of this figure is available in the online journal.)
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correction is overvalued by more than 1% for fluxes lower than
about 1 e− s−1.

3.1.1. Sensitivity of the Signal Estimation to the
Readout Noise and Conversion Gain

The likelihood function depends on two parameters, the
readout noise and the conversion gain, which characterize the
detectors. They will be measured with a given accuracy. It is
important to control the sensitivity of the flux estimator to these
parameters. In Figure 4 we show how the lack of knowledge of
the exact value of the readout noise sR can introduce an offset
of the fitted flux. For the ramps simulated at given flux level
and with a constant readout noise value s = 10R

-e rms we
change the readout noise in Equation (11) by ±20% with
respect to the simulation input sR. For fluxes of the order of
0.1 e− s−1 the bias is around 3% and it decreases with
increasing flux down to only 0.1% for 1 e− s−1 when a 20%
error on sR is used. If the average value of sR over the detector
array is used on board to fit the signal this systematic bias can
be removed on ground knowing the exact value of the readout
noise per pixel and the bias variation as function of ds sR R.

As the Poisson noise in the denominators of the likelihood
Equation (8) is proportional to the flux, the error in the
conversion gain fe will also induce an error in the variance
estimation. We illustrate this in the right panel of Figure 4
where the conversion gain is over- or underestimated by±20%
at most. The flux bias can reach 0.8% for the flux of

=f 0.1in e− s−1 and is reduced down to less than 0.3% for
fluxes higher than 1 e− s−1.

As seen in Figure 3, for delta ds = 0R and d =f 0e , the flux
biasis lower is lower than 0.2% for the fluxes between 10 and
0.1 e− s−1.

While in general the impact of the conversion gain
uncertainty is lower than the bias created by the readout noise

error, both, the electronic readout noise sR and conversion gain
fe per pixel have to be measured with a precision better than 5%
and 10% respectively if we want to avoid systematic effects
higher than 0.5% in the flux estimation at low flux regime.

3.2. Variance of the Flux Estimator

The second derivative of the likelihood function, defined in
Equation (12), provides an estimate of the flux variance. In
Figure 5 we show the ratios rms[ĝ]/sgˆ ˆ as the function of the
simulation input flux fin for three different values of the
electronic readout noise s = 1, 5, 10R

-e . Solid (dashed) lines
correspond to a ¹ 0 (a = 0) in Equation (12). If the noise
model is correct then the observed noise computed as the rms
of the fitted unbiased slopes is equal to the analytic result and
the ratio is equal to one.
According to Figure 5 the model is in a very good agreement

with the observed rms of fitted slopes in all the range of the
fitted fluxes for s = 1R

-e . At higher readout noise the variance
is overestimated in the low flux regime. Namely, at low fluxes
the readout noise correlations between the consecutive
differences of groups become important. This correspond to
the second term of the off-diagonal terms of the covariance
matrix D, Equation (8), which we have neglected. As the
electronic readout noise sR decreases, the flux threshold above
which the observed rms of slopes and the analytic noise
formula are in agreement also decreases. For example, at
s = 5R

-e , the variance given by Equation (12) is compatible
with the dispersion of the fitted slopes for fluxes higher than
1 e− s−1. Below that value, the off-diagonal entries Dk, k±1 are
more than 3% of the diagonal terms Dkk. At s = 10R

-e , the
corresponding flux threshold is 5 e− s−1. The likelihood
corrective term does not introduce any improvement in the
noise estimation in the readout noise dominated regime.
Moreover when the Poisson noise correlations are neglected

Figure 4. Left: flux bias introduced by a lack of knowledge of the exact readout noise value per pixel. Right: flux bias introduced by a lack of knowledge of the exact
conversion gain fe -e[ /ADU] value per pixel.
(A color version of this figure is available in the online journal.)
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the noise is systematically overestimated by 10% as compared
to the observed rms of the data independently of the flux value.

A general expression for the signal variance sRSˆ of an
instrument using a multi-accumulated readout was proposed in
Rauscher et al. (2007). The variance formula given by Equation
(1) in Rauscher et al. (2007), normalized by a factor -n 1g( ),
applies to the inter-group signal gLSFˆ fitted with a non weighted
least squares fit (LSF), a method that neglects any correlations
of the sampled points and their Poisson distribution.

In Figure 6 we show the rms[ĝ] and the rms[gLSFˆ ], obtained
from the simulated exposures with s = 10R

-e , normalized to
the square root of the average inter-group flux

á ñ =
+

-
g

f n n t

n 1
15

f d f

g

in ( )
( )

The theoretical prediction sRSˆ is also shown in the plot. The
difference between the two noise models is negligible for fluxes
as low as 0.1 e− s−1. Yet, the error on the signal derived form
the likelihood function is lower by 6% than sRSˆ in the MACC
(15, 16, 13) readout scheme for fluxes higher than 5 e− s−1.
This translates directly into the quality of scientific data and in
the increased figure of merit of the survey.

4. Quality Factor to Control the Flux Estimate

4.1. Quality Factor Definition

An important advantage of the proposed method is that it
provides a statistical estimator, the “quality factor,” which tests
the compatibility of the data with the straight line fit. The
quality factor verifies whether the data distribution follows the
Poisson convoluted with Gauss distribution as it should be the
case for the nondestructive readouts not subject to any

anomaly. We show here the properties of this estimator and
how it can be used to control the data quality on ground.
The quality factor QF is defined as
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is the value of g in the minimum of QF. Because Equation (16)
is a pure product of Gaussian probability density functions in
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The number of degrees of freedom n in our case is equal to
-n 2g and is independent of the flux value, the number of

coadded frames nf, and the number of drops nd.
The quality factor is related to the pseudo-flux gxˆ through the

relation
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and therefore is related to the unbiased flux estimator ĝ which
can be expressed in terms of gxˆ as
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Figure 5. Ratios of the standard deviations of the fitted fluxes rms[gî] divided
by the noise estimator sgˆ ˆ in MACC(15, 16, 13) readout mode for the simulated
exposures with s = 1R (green), 5 (blue), 10 (red) -e . Solid lines correspond to
sgˆ ˆ given in Equation (12). Dashed lines correspond to a = 0 in Equation (12).
(A color version of this figure is available in the online journal.)

Figure 6. Ratio of the standard deviation of the estimated flux rms[ĝ] (blue)
and rms[gLSFˆ ] (black) normalized to the square root of the average inter-group
flux á ñg in MACC(15, 16, 13) readout mode with s = -e10R rms. In red we
plot the ratio s á ñgRSˆ .
(A color version of this figure is available in the online journal.)
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In Figure 7 we show the distribution of the quality factors
QF obtained in our simulations with the input flux

=f 1in e− s−1. Two cases are shown. In blue the quality factor
is computed taking into account the Poisson correlations (i.e.,
a ¹ 0 in Equation (19)). In green, the Poisson correlations are
neglected (i.e., a = 0 in Equation (19)). The theoretical
distribution c x n;th

2 ( ) is plotted as the gray shadowed region.
The quality factor with a ¹ 0 follows closely the expected
distribution with the mean value of 12.99±0.05. Furthermore,
the flatness of the associated p-value distribution, shown in
Figure 8, strongly indicates that the errors are well estimated in
the present model, which is not the case if one neglects the
Poisson noise correlations, i.e., with a = 0 in Equation (19).

In order to explore the properties of the quality factor over
the range of fluxes from 0.1 e− s−1 to 150 e− s−1 we plot in
Figure 9, left panel, the mean value of the QF distribution
divided by the mean of c x; 13th

2 ( ) in the MACC(15, 16, 13)
readout mode. In the right panel the ratio of the rms of the
quality factor distribution divided by the rms of the distribution
of c x; 13th

2 ( ) is shown. Both ratios are expected to be one if the

quality factor distribution is consistent with c x; 13th
2 ( ).

We confirm thus, that the quality factor QF follows the
c x n;th

2 ( ) distribution for fluxes exceeding 0.5 e− s−1. The
importance of the Poisson correlations encoded in the factor α
is also illustrated in these figures, as for a = 0 the properties of
the quality factor deviate by 20% from the expected
distribution. The same behavior is confirmed in our simulations
for different electronic readout noise values sR ranging from 1
to 50 -e rms so that we can use the value of QF as a reliable
indicator of the goodness of the fit over the large range of
fluxes considered in this paper.

4.2. Validation of the QF Distribution with the
H2RG Data

We have verified the distribution of the quality factor by
using the engineering grade Euclid H2RG l m= 2.3 mc

detectors operated in our test facilities. The readout noise per
pixel was computed on the dark exposures. The median value
over the array, equal to 12 -e rms, was used to fit the flux on
exposures with higher incident flux in the MACC(15, 16, 13)
exposure. The average conversion gain of 1.36 -e /ADU,
computed using the Photon Transfer Curve method on flat field
exposures, was set for each pixel. The distribution of the fluxes
fitted over 2040×2040 pixels and the corresponding quality
factors and p-values are shown in Figure 10. The distribution of
the quality factors is centered on 13.31 which corresponds to
the number of degrees of freedom in the MACC(15, 16, 13)
exposures. The distribution of the p-values is flat indicating that
the pixel readout errors are well estimated. An example of the
exposure of one pixel with a p-value less than 0.001 is also
shown. The pixel was subject to a cosmic ray hit during the
exposure. This example confirms that pixels that behave badly
can be flagged on the basis of the quality factor.

5. Conclusions and Discussion

The control of the systematic effects in the flux measure-
ment, its bias and the error associated to the extracted signal are
essential for the Euclid mission.
We have presented in this paper a new estimator of the flux,

adapted to the multi-accumulated readout mode of the NIR
detectors on board the NISP instrument. The estimator has an
analytic form, so that the flux of the observed objects can be
fitted in flight.

Figure 7. Quality factor QF distribution for the simulation input flux
=f 1in e− s−1 and the spectrometric readout scheme MACC(15, 16, 13).

The theoretical c x; 13th
2 ( ) defined by Equation (18) is plotted as gray shadowed

zone.
(A color version of this figure is available in the online journal.)

Figure 8. p-value distribution for the quality factor QF with the simulation
input flux =f 1in e− s−1 and the spectrometric readout scheme MACC(15, 16,
13). The p-value of the theoretical c x; 13th

2 ( ) defined by Equation (18) is
plotted as gray shadowed zone.
(A color version of this figure is available in the online journal.)

8

Publications of the Astronomical Society of the Pacific, 128:104504 (10pp), 2016 October Kubik et al.



We have demonstrated by Monte Carlo simulations that the
bias of the flux estimator can be controlled to less than 0.03%
in the range of scientifically interesting fluxes of Euclid. That is
assured by taking into account first, the flux dependent error in
the likelihood formulation, and second, the correlations

intrinsic to the nondestructive readouts of the infrared
detectors.
We examined how the accuracy of the estimator is sensitive

to the errors in the pixel readout noise and the conversion gain
from digital units into electrons. If one wants to keep the

Figure 9.We plot in the left (right) panel the ratio of mean (rms) value of the quality factors QF distribution divided by the mean (rms) of c x; 13th
2 ( ) as the function of

flux.
(A color version of this figure is available in the online journal.)

Figure 10. Distribution of the fitted fluxes (upper left), quality factors (upper right) and the corresponding p-values (lower left) on the data taken with a Euclid-like
H2RG l m= 2.3 mc detector. An example of the ramp flagged as bad using the criteria of p-value <0.001 is also shown (lower right).
(A color version of this figure is available in the online journal.)
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systematic bias lower than 0.5% then for the lowest fluxes the
error on the readout noise and conversion gain must not exceed
5% and 10% respectively. If the average readout noise is used
to fit the signal on board, then a correction could be applied on
ground using the precise map of readout noise values per pixel.
The error on the flux estimator introduced in this paper is lower
by 6% than the noise derived in Rauscher et al. (2007) for
fluxes higher than 5 e− s−1. This translates directly into a
higher figure of merit of the survey.

Finally we have defined the quality factor which follows the
c x n;th

2 ( ) distribution and can be therefore used as a reliable
check of the consistency of the flux estimator.

In the context of the Euclid collaboration, we propose to
compute in flight and to send to the ground the pseudo-flux gxˆ ,
defined in Equation (17), and the quality factor defined in
Equation (19). The unbiased flux ĝ can be then computed on
ground using formula (20).

The simulation used to validate our algorithms does not
include non-Gaussian tails in the readout noise. The compar-
ison with the data suggests that the performance should not be
drastically lowered.

We have assumed that the detector is perfectly linear over its
entire well depth, is thermally stable, and is not subject to any
time dependent effects that vary during integrations or
readouts. However, if the nonlinearity of the detector is not
accounted for, the estimated source flux can be substantially
lower than the true source flux. One can use the nonlinearity
correction scheme described in Vacca et al. (2004) prior to the
flux estimate in orbit. In the case of Euclid, the flux estimation
will be applied on the raw exposures and the nonlinearity
effects will be corrected on the ground with a method presented
in the subsequent paper. A correction should also be applied on
the quality factor to recover a correct QF for high flux where
pixels have a non linear response but are not affected by any
other anomaly. The exact method and results will be addressed
in a further study.

We are convinced that the proposed flux estimate and the
associated quality factor will help achieve the high precision

scientific goals of the mission. We anticipate that the method
can be applied by other missions that use similar detectors and
readout schemes and that are subject to similar CPU and
telemetry limitations.
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Lyon Institute of Origins under grant ANR-10-LABX-66.
Authors acknowledge the financial support of Centre National
des Études Spatiales and the technical support of the IN2P3
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the technical support from the IPNL and CPPM institutes for
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