

Arnaud Chapon

Congrès de la Société Française de Physique 2011

Masse et nature du neutrino : de NEMO3 à SuperNEMO

Arnaud Chapon

LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen, France

7 juillet 2011

< ロ > < 同 > < 回 > < 回 >

Sommaire

- Les particules fondamentales
- Etat de connaissances du neutrino
- 2 La double désintégration $\beta\beta$
 - La désintégration β simple
 - Deux processus, a priori
- 3 L'expérience NEMO3
 - Dispositif expérimental
 - Réduction du bruit de fond
 - Résultats
 - Le projet SuperNEMO
 - De NEMO3 à SuperNEMO
 - Développements R&D

Le Neutrino, une particule fondamentale

Les particules fondamentales

- Fermions
 - Quarks

u c t d s b

Leptons

Bosons

Le Neutrino, une particule fondamentale

Etat de connaissances du neutrino

Le neutrino est :

- un lepton neutre
- soumis à la seule interaction faible

1930 : le neutrino est considéré :

- de masse nulle
- de nature Dirac ($\nu \neq \bar{\nu}$)

1990 : Oscillation du neutrino \Longrightarrow Le neutrino est massif $\frac{1}{T_{1/2}(2\beta0\nu)}\propto \langle m_\nu\rangle^2$

S

La double désintégration $\beta\beta$

La désintégration β simple

La double désintégration $\beta\beta$

Deux processus, a priori

Le processus permis $(2\nu 2\beta)$

$$({\rm A,Z}) \rightarrow ({\rm A,Z+2}) + 2e^- + 2\bar{\nu_e}$$

- $\Delta L = 0$
- $\nu \neq \bar{\nu}$?

•
$$(T_{1/2}^{2\nu})^{-1} = G_{2\nu} |M_{2\nu}|^2$$

•
$$T_{1/2}^{2\nu} \approx 10^{19} - 10^{21}$$
 and

Le processus au-delà du MS $(0\nu 2\beta)$

$$(\mathsf{A},\!\mathsf{Z}) \to (\mathsf{A},\!\mathsf{Z}\!+\!2) + 2e^-$$

- $\Delta L = 2$
- $\nu \equiv \bar{\nu}$

•
$$(T_{1/2}^{0\nu})^{-1} = G_{0\nu} |M_{0\nu}|^2 |m_{\beta\beta}|^2$$

•
$$T_{1/2}^{0
u}\gtrsim 10^{24}$$
ans

La double désintégration $\beta\beta$

Deux processus, a priori

Idéalement, une expérience de $0\nu 2\beta$ doit permettre :

- de mesurer l'énergie des deux électrons avec une bonne résolution
- identifier individuellement les deux électrons (E_{e1}, E_{e2}, Δt, cosθ)

イロト イ団ト イヨト イヨ

\$

L'expérience NEMO3

Dispositif expérimental

• Source (1)

- 10kg d'isotopes émetteurs $\beta\beta$
- Chambre à fils (4)
 - 6180 cellules à dérive
 - Gaz : He + 4% éthylène + 1% Ar+ 0.1% H₂O
- Calorimètre
 - 1940 scintillateurs plastiques (2)
 couplés à des PMs très basse
 radioactivité (3)

• • • • • • • • • • • •

Dispositif expérimental

Source

• 10kg d'isotopes émetteurs $\beta\beta$

isotope	$Q_{\beta\beta}$	enrichissement	masse
$\beta\beta$	(keV)	(%)	(g)
¹⁰⁰ Mo	3035	96.8	6914
⁸² Se	2995	96.9	932
¹³⁰ Te	2529	89.4	454
¹¹⁶ Cd	2802	93.2	405
¹⁵⁰ Nd	3367	91.0	37
⁹⁶ Zr	3350	57.3	9.4
⁴⁸ Ca	4271	73.1	6.99
natTeO			0.9
Cu			0.7

Réduction du bruit de fond

Mesure des paramètres cinétiques
E_{θ1}, E_{θ2}, Δt, cosθ
Identification des particules
e⁻, e⁺, γ, α
Mesure directe des bruits de fond
e⁻, e⁻γ, e⁻γγ, e⁻γγγ, e⁻α, e⁻ traversant...

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Réduction du bruit de fond

Laboratoire souterrain de Modane :

- volume de 3000 m³
- 1700 m de roche
- réduction du rayonnement cosmique d'un facteur 10⁶

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Résultats - $2\nu 2\beta$ du ¹⁰⁰Mo¹ (7kg)

 \approx 6 ans, $\epsilon(2\nu 2\beta) = 4.3\%$, $\frac{S}{B} = 76$:

 $T_{1/2}^{2
u2eta} = (7.16\pm 0.01_{(stat)}\pm 0.54_{(sys)}) imes 10^{18} ext{ ans }$

Phase I (\approx 1 an, $\frac{S}{B}$ = 40) : $T_{1/2}^{2\nu2\beta} = (7.11 \pm 0.02_{(stat)} \pm 0.54_{(sys)}) \times 10^{18}$ ans

¹PRL 95 (182302) 2005

Résultats - $2\nu 2\beta$ des autres isotopes

$2\nu 2\beta$ des autres isotopes $\tau^{2\nu 2\beta}$ (années) isotopo Г

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ISOTOPC	1/2 (annecs)
$ \begin{array}{c cccc} & & & & & & & & & & & & & & & & & $	¹⁰⁰ Mo	$(7.16 \pm 0.01_{(stat)} \pm 0.54_{(sys)}) \times 10^{18}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	⁸² Se	$(9.6 \pm 0.1_{(stat)} \pm 1.0_{(sys)}) \times 10^{19}$
$ \begin{array}{c c} ^{116} \text{Cd} & (2.88 \pm 0.04_{(stat)} \pm 0.16_{(sys)}) \times 10^{19} \\ ^{150} \text{Nd} & (9.11 \pm 0.25_{(stat)} \pm 0.63_{(sys)}) \times 10^{18} \\ ^{96} \text{Zr} & (2.35 \pm 0.14_{(stat)} \pm 0.16_{(sys)}) \times 10^{19} \\ ^{48} \text{Ca} & (4.4 \pm 0.5_{(stat)} \pm 0.4_{(sys)}) \times 10^{19} \\ \end{array} $	¹³⁰ Te	$(7 \pm 1_{(stat)} \pm 1_{(sys)}) \times 10^{20}$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	¹¹⁶ Cd	$(2.88 \pm 0.04_{(stat)} \pm 0.16_{(sys)}) \times 10^{19}$
$ \begin{array}{ c c c c c } & ^{96}Zr & $(2.35 \pm 0.14_{(stat)} \pm 0.16_{(sys)}) \times 10^{19}$ \\ \hline ^{48}Ca & $(4.4 \pm 0.5_{(stat)} \pm 0.4_{(sys)}) \times 10^{19}$ \\ \hline \end{array} $	¹⁵⁰ Nd	$(9.11 \pm 0.25_{(stat)} \pm 0.63_{(sys)}) \times 10^{18}$
⁴⁸ Ca $(4.4 \pm 0.5_{(stat)} \pm 0.4_{(sys)}) \times 10^{19}$	⁹⁶ Zr	$(2.35 \pm 0.14_{(stat)} \pm 0.16_{(sys)}) \times 10^{19}$
	⁴⁸ Ca	$(4.4 \pm 0.5_{(stat)} \pm 0.4_{(sys)}) imes 10^{19}$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

Résultats - $0\nu 2\beta$ du ¹⁰⁰Mo (7kg) et du ⁸²Se (1kg)

5

L'expérience NEMO3

Résultats - autres mesures

Etats excités³

- $T_{1/2}^{2\nu}(0^+ \to 0^+_1) =$ (5.7^{+1.3}_{-0.9(stat)} ± 0.8_(sys)) × 10²⁰ yr
- $T_{1/2}^{0\nu}(0^+ \rightarrow 0_1^+) > 8.9 \times 10^{22} yr$ @ 90% CL
- $T_{1/2}^{2\nu}(0^+ \rightarrow 2_1^+) > 1.1 \times 10^{21} yr$ @ 90% CL
- $T_{1/2}^{0\nu}(0^+ \rightarrow 2^+_1) > 1.6 \times 10^{23} yr$ @ 90% CL

•
$$T_{1/2}^{0\nu} > 5.4 \times 10^{23} yr$$
 @ 90% CL

³Nucl. Phys. A781 (2007) 209 ⁴Nucl. Phys. A765 (2006) 483

A B A A B A

S

Le projet SuperNEMO De NEMO3 à SuperNEMO

NEMO3		SuperNEMO
¹⁰⁰ Mo	isotope	⁸² Se or ⁴⁸ Ca or ¹⁵⁰ Nd
7kg	masse	100kg
18%	efficacité	30%
208 TI : $\approx 100 \mu$ Bq/kg 214 Bi : < 300 μ Bq/kg 222 Rn : 5 mBq/m ³	contaminations internes dans les feuilles $\beta\beta$ Rn dans le tracker	208 TI : $\leq 2\mu$ Bq/kg 214 Bi : $\leq 10\mu$ Bq/kg 222 Rn : ≤ 0.15 mBq/m ³
8% @ 3MeV	résolution du calorimètre	4% @ 3MeV
$T_{1/2}^{0 u}\gtrsim 10^{24}yr$ $\langle {f m}_{ u} angle$ < (0.3 - 0.9) eV	sensibilité	$T_{1/2}^{0 u}\gtrsim 10^{26}yr$ $\langle {f m}_{ u} angle$ < (0.04 - 0.11) eV

イロト イヨト イヨト イヨト

크

Le projet SuperNEMO De NEMO3 à SuperNEMO

SuperNEMO :

- 20 modules, chacun contenant 5 kg de source
- chambre à fils + calorimètre segmenté
- installation au LSM + blindage passif

S

Le projet SuperNEMO

Développements R&D - Production des sources

- Enrichissement et purification à grande échelle possibles
- Respect des contraintes de radiopureté :
 - ²⁰⁸TI : < 2 µBq/kg</p>
 - ²¹⁴Bi : < 10 µBq/kg</p>

BiPo detector⁵

- Sensibilité de BiPo3 (3.24 m²) :
 - A(208 TI)_{BiPo1} \sim 1.5 μ Bq/m² (258 jours.m² @ LSM)
 - 0.6 < A(²¹⁴Bi)_{BiPo3} < 23.0 μBq/m² (5.34 jours.m² @ LSC)

⁵Methods in Physics Research A 622 (2010) 120–128

Le projet SuperNEMO

Développements R&D - Chambre à fils + calorimètre

Chambre à fils

 $\sigma_T \sim 0.7 \text{ mm}$ $\sigma_L \sim 1 \text{ cm}$ $\epsilon_{Geiger} > 98\%$

Calorimètre

Bloc de PVT ($256 \times 256 \text{ mm}^2$) couplé à un PM 8" (R5912MOD) :

FWHM = 7.3% @ 1 MeV FWHM = 4.2% @ 3 MeV

S

Le projet SuperNEMO

Développements R&D - Intégration

Intégration

- Installation du démonstrateur de SuperNEMO en lieu et place de NEMO3, après son démontage
- Installation du détecteur final dans l'extension du LSM

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Merci de votre attention

イロン イロン イヨン イヨン